Saturday 9 January 2016

All About CDMA

Code division multiple access (CDMA) is a channel access method used by various radio communication technologies.

CDMA is an example of multiple access, where several transmitters can send information simultaneously over a single communication channel. This allows several users to share a band of frequencies (see bandwidth). To permit this without undue interference between the users, CDMA employs spread-spectrum technology and a special coding scheme (where each transmitter is assigned a code).
CDMA is used as the access method in many mobile phone standards such as cdmaOne, CDMA2000 (the 3G evolution of cdmaOne), and WCDMA (the 3G standard used by GSM carriers), which are often referred to as simply CDMA.

History

The technology of code division multiple access channels has long been known. In the Soviet Union (USSR), the first work devoted to this subject was published in 1935 by professor Dmitriy V. Ageev. It was shown that through the use of linear methods, there are three types of signal separation: frequency, time and compensatory. The technology of CDMA was used in 1957, when the young military radio engineer Leonid Kupriyanovich in Moscow, made an experimental model of a wearable automatic mobile phone, called LK-1 by him, with a base station. LK-1 has a weight of 3 kg, 20–30 km operating distance, and 20–30 hours of battery life. The base station, as described by the author, could serve several customers. In 1958, Kupriyanovich made the new experimental "pocket" model of mobile phone. This phone weighed 0.5 kg. To serve more customers, Kupriyanovich proposed the device, named by him as correllator. In 1958, the USSR also started the development of the "Altai" national civil mobile phone service for cars, based on the Soviet MRT-1327 standard. The phone system weighed 11 kg (24 lb). It was placed in the trunk of the vehicles of high-ranking officials and used a standard handset in the passenger compartment. The main developers of the Altai system were VNIIS (Voronezh Science Research Institute of Communications) and GSPI (State Specialized Project Institute). In 1963 this service started in Moscow and in 1970 Altai service was used in 30 USSR cities.

Uses

A CDMA2000 mobile phone
One of the early applications for code division multiplexing is in the Global Positioning System (GPS). This predates and is distinct from its use in mobile phones.
The Qualcomm standard IS-95, marketed as cdmaOne.
The Qualcomm standard IS-2000, known as CDMA2000, is used by several mobile phone companies, including the Globalstar satellite phone network.
The UMTS 3G mobile phone standard, which uses W-CDMA.
CDMA has been used in the OmniTRACS satellite system for transportation logistics.

Steps in CDMA modulation
CDMA is a spread-spectrum multiple access technique. A spread spectrum technique spreads the bandwidth of the data uniformly for the same transmitted power. A spreading code is a pseudo-random code that has a narrow ambiguity function, unlike other narrow pulse codes. In CDMA a locally generated code runs at a much higher rate than the data to be transmitted. Data for transmission is combined via bitwise XOR (exclusive OR) with the faster code. The figure shows how a spread spectrum signal is generated. The data signal with pulse duration of T_{b} (symbol period) is XOR’ed with the code signal with pulse duration of T_{c} (chip period). (Note: bandwidth is proportional to 1/T, where T = bit time.) Therefore, the bandwidth of the data signal is 1/T_{b} and the bandwidth of the spread spectrum signal is 1/T_{c}. Since T_{c} is much smaller than T_{b}, the bandwidth of the spread spectrum signal is much larger than the bandwidth of the original signal. The ratio T_{b}/T_{c} is called the spreading factor or processing gain and determines to a certain extent the upper limit of the total number of users supported simultaneously by a base station.

An analogy to the problem of multiple access is a room (channel) in which people wish to talk to each other simultaneously. To avoid confusion, people could take turns speaking (time division), speak at different pitches (frequency division), or speak in different languages (code division). CDMA is analogous to the last example where people speaking the same language can understand each other, but other languages are perceived as noise and rejected. Similarly, in radio CDMA, each group of users is given a shared code. Many codes occupy the same channel, but only users associated with a particular code can communicate.

In general, CDMA belongs to two basic categories: synchronous (orthogonal codes) and asynchronous (pseudorandom codes).


Example

An example of four mutually orthogonal digital signals.
Start with a set of vectors that are mutually orthogonal. (Although mutual orthogonality is the only condition, these vectors are usually constructed for ease of decoding, for example columns or rows from Walsh matrices.) An example of orthogonal functions is shown in the picture on the right. These vectors will be assigned to individual users and are called the code, chip code, or chipping code. In the interest of brevity, the rest of this example uses codes, v, with only two bits.

Each user is associated with a different code, say v. A 1 bit is represented by transmitting a positive code, v, and a 0 bit is represented by a negative code, –v. For example, if v = (v0, v1) = (1, –1) and the data that the user wishes to transmit is (1, 0, 1, 1), then the transmitted symbols would be
(v, –v, v, v) = (v0, v1, –v0, –v1, v0, v1, v0, v1) = (1, –1, –1, 1, 1, –1, 1, –1). For the purposes of this article, we call this constructed vector the transmitted vector.

Each sender has a different, unique vector v chosen from that set, but the construction method of the transmitted vector is identical.

Now, due to physical properties of interference, if two signals at a point are in phase, they add to give twice the amplitude of each signal, but if they are out of phase, they subtract and give a signal that is the difference of the amplitudes. Digitally, this behaviour can be modelled by the addition of the transmission vectors, component by component.

If sender0 has code (1, –1) and data (1, 0, 1, 1), and sender1 has code (1, 1) and data (0, 0, 1, 1), and both senders transmit simultaneously, then this table describes the coding steps:


No comments:

Post a Comment